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The S 5 1 Relativistic Oscillator

Valeri V. Dvoeglazov1,2
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Following upon my previous paper about the S 5 0 relativistic oscillator, I build
up an oscillator-like system which one can call the S 5 1 Proca oscillator. The
Proca field function is obtained in the framework of the Bargmann–Wigner
prescription and the interaction is introduced similarly to the S 5 1/2 Dirac
oscillator case regarded by Moshinsky and Szczepaniak. I obtain the intriguing
rule of quantization % 5 "v/2 for the parity states (21)j and % 5 6"v( j 1
1/2) for the parity states 2(21)j. There are no radial excitations. I apply the
above-mentioned procedure to the case of the two-body relativistic oscillator, too.

1. THE PROCA OSCILLATOR—PUZZLED QUANTIZATION

Here I continue the study of oscillator-like systems first undertaken by
Moshinsky and Szczepaniak [1] for the S 5 1/2 case. Extensions of this
model to the case of a two-body problem and to other spins have been
presented in refs. 2 and 3–5, respectively. A detailed consideration of the
S 5 1/2 case presented in ref. 6 demonstrated that this form of interaction
is free of the problem known as the Klein paradox. From the formal point
of view the oscillator-like interaction can be interpreted as the interaction
with a linear electric field E i 5 kr i [7] through the term smnFmn/2.

My previous work [8–11] explored several interesting features of oscilla-
tor-like systems. For instance, in refs. 8 and 10 the possibility of an oscillator-
like construct for arbitrary spin in the Dowker formalism [12] is proved.
Some ideas providing a basis for the matrix construct of the Klein–Gordon
oscillator [3] are presented in refs. 8 and 9. In ref. 11 the Bargmann–Wigner
(BW) set of equations is considered, with an antisymmetric second-rank
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spinor being chosen as a field function. Such a description leads to the
Kemmer–Dirac formalism [13] for the S 5 0 particle. The interaction intro-
duced in each of the BW equations in the form proposed by Moshinsky and
Szczepaniak results in an oscillator-like equation with double degeneracy (in
N, the principal quantum number) of the spectrum in the low-frequency limit
cf. [3].

The aim of this paper is to consider the S 5 1 Proca oscillator3 with
the interaction introduced in the same manner as in ref. 11, namely, I start
from the Bargmann–Wigner equations with the non-gauge interaction
obtained after the substitution ­i → ­i 1 ikg0r i, i 5 1, 2, 3,

H [igm­m 2 kgig0r i 2 m]C(x) 5 0

C(x)[i(gm)T ­
←

m 2 k(gig0)Tr i 2 m] 5 0
(1)

The S 5 1 BW field function presents itself a symmetric spinor of the second
rank (4 3 4 symmetric matrix); the derivative acts to the left in the second
equation. So the field function obeys the Dirac oscillator equation in each
of the indices.

The symmetric wave function is expanded in the complete set of g-
matrices4

C{ab} 5 gm
adCdbAm 1 smn

adCdbFmn (2)

The obtained equations for Am and Fmn are

­nF n0 5 2
m
2

A0 1
k
2

(r iAi) (3a)

­nF ni 5 2
m
2

Ai 1
k
2

r iA0 (3b)

2mFi0 5 (­i A0 2 ­0 Ai) 1 2k(r jFi
j ) (3c)

2mFjk 5 (­j Ak 2 ­k Aj) 2 2k(r jF 0
k 2 r kF 0

j) (3d)

Let me introduce Ei 5 Fi0 and Bi 5 21/2eijkFjk. Then, expressing the depen-
dence of the wave function on t as exp(2i%t), one can obtain the equations
(c 5 " 5 1)

3 I take the liberty of naming the equations obtained below the Proca oscillator since in the
free case equations (3a)–(3d) are the well-known Proca equations [14].

4 Taking into account the symmetry properties of the field function, it is sufficient to use only
gmC and smn C [15] in the considered case; C is used as the matrix of a charge conjugation.
Compare with formula (4), the S 5 0 case, in ref. 11.
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5
(% 1 m)E i 1 !2eijkpj

+Bk 5
i
2

(% 1 m)Ai 2
i

!2
pi

+A0

(% 2 m)E i 1 !2eijkpj
2Bk 5 2

i
2

(% 2 m)Ai 1
i

!2
pi

2A0

2( pi E i) 5 imA0 2 ik(r iAi)
2meijk Bk 2 2k(r iE j 2 r jE i) 5 i( pi Aj 2 pj Ai)

(4)

where
›

p 6 5 (1/!2)(
›

p 6 k
›
r ) and (

›
p i) 5 (1/i)

›
¹ i. This set can be rewritten in

a more symmetric form after the substitution Di 5 E i 2 (i/2)Ai and F i 5 E i

1 (i/2)Ai 5 (Di)* if E i and Ai are real quantities. In such a way one obtains

6
im

!2
A0 5 pi

+F i 1 pi
2Di

mBi 5
1

!2
eijk[pj

+F k 2 pj
2Dk]

(% 1 m)Di 5 2!2eijkpj
+Bk 2

i

!2
pi

+A0

(% 2 m)F i 5 2!2eijkpj
2Bk 1

i

!2
pi

2A0

(5)

It is possible to eliminate A0 and Bi on using the commutation relations
[p1

i , p2
j ]2 5 ikdij and {p1

i p2
j 2 p1

j p2
i } f (

›
r ) 5 keijkL̂ kf (

›
r ) 5 ik(

›
S

›
L )ij f (

›
r ). The

result is

m(% 1 m) Di 5 [2ik(
›

S
›

L )ij 2
›

p 1
k

›
p 2

k dij]D j 1 [2(
›

S
›

p +)2
ij 2 (

›
p +)2dij]F j (6a)

m(% 2 m)Fi 5 [(
›

p 2)2dij 2 2(
›

S
›

p 2)2
ij]D j 1 [2ik(

›
S

›
L )ij 1

›
p 2

k
›

p 1
k dij]F j (6b)

›
S are the spin-1 matrices,

›
L is the orbital part of the angular momentum

operator.
In order to carry out further decoupling one could try to apply the

procedure of ref. 11 to the system of equations (6a)–(6b). But the calculations
are more complicated compared with the previous work and do not lead
directly to the desired result. The system is not decoupled after the first
application of the procedure of ref. 11. We arrive at

m2(%2 2 m2)Di 5 [dif.op.1]ijDj 2 2ikp1
i p1

j F j (7a)

m2(%2 2 m2)F i 5 [dif.op.2]ijF j 1 2ikp2
i p2

j Dj (7b)

with complicated operators dif.op1,2 on the right-hand side of the equation.
On the other hand, we do not want to apply the procedure of ref. 18, p. 298,
because it is doubtful that we can insert the complete set of the state vectors
as in the formulas (108), (109) of the cited reference between h?S and j?S.
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Such bra vectors as in (108a), (108b) may not exist, e.g., in the case of low
quantum numbers N and j.

Nevertheless, one can use another method. Namely, (1) multiplying,
e.g., the first equation (6a) by (Di)*, (2) integrating over d3r, and (3) using
identities of the Hermitian conjugation, expansion in spherical tensors, and
normalization conditions, the problem is solved. On this basis we derive the
quantization rule for purely imaginary k 5 imv:

% 5 2
ik
2m

[ j( j 1 1) 2 l(l 1 1) 2 s(s 1 1)] 2
3ik
2m

(8)

Very surprisingly, the principal quantum number is not present here! The
energy is due to the spin–orbit interaction and the constant term, which is
similar to that which appeared in the Moshinsky–Szczepaniak version of the
S 5 1/2 oscillator. Finally, for the states of parity (21) j one has

% 5 "v/2 (9)

which can be interpreted as zero-mode oscillations (we recover " for visual
purposes). On the other hand, for the states of parity 2(21) j one has

% 5 6
"v
2

(2j 1 1) (10)

i.e., the nonrelativistic formula for the harmonic oscillator with the substitu-
tion N → j and with two signs of the energy!5 We do not know any appropriate
Hamiltonian for higher spins. That proposed by Weaver et al. [16] leads to
nonlocal theory even in the interaction-free case. Therefore, one can only
speculate about the origin of the established infinite degeneracy in the N
quantum number. We must leave the detailed interpretation of Eqs. (9), (10)
for future publications.

2. THE TWO-BODY RELATIVISTIC OSCILLATOR

Now I consider the case of the two-body Dirac oscillator [2]. The two-
body Dirac Hamiltonian with oscillator-like interaction is given by (mv 5
1 and, hence, k 5 i here)6

i1 ­

­t1
1

­

­t2
2c 5 *c

5 F 1

!2
(

›
a 1 1

›
a 2) ?

›
P 1

1

!2
(

›
a 1 2

›
a 2) ?

›
p

5 Compare with the discussion on p. 177 in ref. 11.
6 The oscillator-like system with ,(

›
a 1 2

›
a 2) ?

›
rBG5 has also been considered.
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2
i

!2
(

›
a 1 2

›
a 2) ?

›
rB 1 m(b1 1 b2)Gc (11)

where the matrices are given by the direct products

›
a 1 5 1 0

›
s 1›

s 1 0 2 ^ 112^2 0
0 12^22,

(12)
›

a 2 5 112^2 0
0 12^22 ^ 1 0

›
s 2›

s 2 0 2
B 5 b1 ^ b2 5 112^2 0

0 212^22 ^ 112^2 0
0 212^22 (13)

G5 5 g5
1 ^ g5

2 5 1 0 12^2

12^2 0 2 ^ 1 0 12^2

12^2 0 2 (14)

If we are in the center-of-mass system (c.m.s.) it is possible to equate
›

P 5
0. While the two-body Dirac oscillator seems not to have found considerable
phenomenological applications (see spectra presented in ref. 18 in connection
with experiment), this is an interesting mathematical model.

Now I apply the same procedure as that used for the transformation of
the Bargmann–Wigner set of equations to the Proca equations (see refs. 11
and 15 and above): the 16-component wave function of two-body Dirac
equation can also be expanded in the complete set of matrices: (gmC ), (smnC )
and C, (g5C ), and (g5gmC ). The wave function is decomposed into symmetric
and antisymmetric parts using the above-mentioned complete system of
matrices

c 5 c{ab} 1 c[ab] (15)

where the first term is given by formula (2) and the second term by formula
(4) of ref. 11. In such a way we obtain the set of equations7

%A0 5 0, %Ã0 5 22mw̃ (16a)

%w 5 4i
›

p 2
i F i0 (16b)

%w̃ 5 22mÃ0 1 2eijk ›
p 1

i F jk (16c)

%Ãi 5 2ieijk ›
p 7

j Ak (16d)

%Ai 5 4imF 0i 1 2ieijk ›
p 6

j Ãk (16e)

7 I correct here the misprints in the signs of the equations of ref. 8.
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%F 0i 5 22imAi 1 2i
›

p 1
i w (16f)

%F jk 5 eijk ›
p 2

i w̃ (16g)

The signs in the set (16a)–(16g) correspond to two types of Dirac oscillator-
like interactions, with ,(

›
a 1 2

›
a 2)B and ,(

›
a 1 2

›
a 2)BG5, respectively.

The two-body Dirac oscillator equations in the form (16a)–(16g) can
be decoupled into a set containing only functions w, w̃, and Ãm and another
one containing only Am and Fmn:

(%2 2 8m2)w 5 8(
›

p 2
i

›
p 1

i )w 2
16im

%
eijk ›

p 2
i

›
p 6

j Ãk (17a)

(%2 2 4m2)w̃ 5 4(
›

p 1
i

›
p 2

i )w̃ (17b)

%Ã0 5 2 2mw̃ (17c)

(%2 2 8m2)Ãi 5 4(
›

p 7
j

›
p 6

jj )Ãi 2 4(
›

p 7
j p6

i )Ãj 2
16im

%
eijk ›

p 7
j

›
p 1

k w (17d)

and

%A0 5 0 (18a)

%2Ai 5 4im%F 0i 1 4(
›

p 6
j

›
p 7

j )Ai 2 4(
›

p 6
j

›
p 7

i )Aj (18b)

%2F 0i 5 22im % Ai 2 8(
›

p 1
i

›
p 2

j )F 0j (18c)

(%2 2 4m2)F jk 5 2eijkelmn(
›

p 2
i

›
p 1

l )F mn (18d)

This proves that the Dirac oscillator interaction, like the case when we
introduce the (self-) interaction with the transverse 4-vector potential into
the Proca equation (or, equivalently, into the Bargmann–Wigner equations),
does not mix S 5 1 and S 5 0 states.

The solutions of equations for the two-body relativistic oscillator have
been given in ref. 17, see the formulas (62.20), (62.27), (62.33) and (62.23),
(62.30), (62.35), (62.43), (62.45), (62.49). However, the comparison is rather
difficult because instead of the second-rank spinors for S 5 0 and S 5 1 I use
the corresponding scalar, 4-vector, and antisymmetric tensor field functions
(Sankaranarayanan and Good [16]).
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15. D. Lurié, (1968). Particles and Fields, Interscience, New York, p. 30.
16. D. L. Weaver, C. K. Hammer, and R. H. Good, Jr., (1964). Phys. Rev. B 135 241; see also

A. Sankaranarayanan and R. H. Good, Jr., (1965). Nuovo Cimento 36 1303.
17. M. Moshinsky and Yu. F. Smirnov, (1996). The Harmonic Oscillator in Modern Physics,

Hartwood Academic Publishers, Chapter XII.
18. M. Moshinsky, (1996). in Latin-American School of Physics (XXX ELAF). Group Theory

and Its Applications, O. Castaños et al., eds., AIP, Woodbury, New York, p. 279.


